our pilot customers are already successfully using optogenetic flow cytometry. Our very first pilot customer just published a very exciting story using optogenetics to control T cell receptor ligand binding. 

optogenetic control shows that kinetic proofreading regulates the activity of the T cell receptor

The pivotal task of the immune system is to distinguish between self and foreign antigens. The kinetic proofreading model (KPR) proposes that T cells discriminate self from foreign ligands by the different ligand binding half-lives to the T cell receptor (TCR). It is challenging to test KPR as the available experimental systems fall short of only altering the binding half-lives and keeping other parameters of the ligand-TCR interaction unchanged. We engineered an optogenetic system using the plant photoreceptor phytochrome B to selectively control the dynamics of ligand binding to the TCR by light. Combining experiments with mathematical modeling we find that the ligand-TCR interaction half-life is the decisive factor for activating downstream TCR signaling, substantiating the KPR hypothesis.

Omid Sascha Yousefi, Matthias Guenther, Maximilian Hoerner, Julia Chalupsky, Maximilian Wess, Simon M. Brandl, Robert W. Smith, Christian Fleck, Tim Kunkel, Matias D. Zurbriggen, Thomas Hoefer, Wilfried Weber, Wolfgang W. A. Schamel



LED Thermo Flow - Combining Optogenetics with Flow Cytometry.

Optogenetic tools allow isolated, functional investigations of almost any signaling molecule within complex signaling pathways. A major obstacle is the controlled delivery of light to the cell sample and hence the most popular tools for optogenetic studies are microscopy-based cell analyses and in vitro experiments. The flow cytometer has major advantages over a microscope, including the ability to rapidly measure thousands of cells at single cell resolution. However, it is not yet widely used in optogenetics. Here, we present a device that combines the power of optogenetics and flow cytometry: the LED Thermo Flow. This device illuminates cells at specific wavelengths, light intensities and temperatures during flow cytometric measurements. It can be built at low cost and be used with most common flow cytometers. To demonstrate its utility, we characterized the photoswitching kinetics of Dronpa proteins in vivo and in real time. This protocol can be adapted to almost all optically controlled substances and substantially expands the set of possible experiments. More importantly, it will greatly simplify the discovery and development of new optogenetic tools.

Kathrin Brenker,  Kerstin Osthof, Jianying Yang, Michael Reth

doi: 10.3791/54707